On the complexity of dominating set problems
نویسندگان
چکیده
The minimum all-ones problem and the connected odd dominating set problem were shown to be NP-complete in different papers for general graphs, while they are solvable in linear time (or trivial) for trees, unicyclic graphs, and series-parallel graphs. The complexity of both problems when restricted to bipartite graphs was raised as an open question. Here we solve both problems. For this purpose, we introduce the related decision problem of the existence of an odd dominating set without isolated vertices, and study its complexity. Our main result shows that this new problem is NP-complete, even when restricted to bipartite graphs. We use this result to deduce that the minimum all-ones problem and the connected odd dominating set problem are also NP-complete for bipartite graphs. We show that all three problems are solvable in linear time for graphs with bounded treewidth. We also show that the new problem remains NP-complete when restricted to other graph classes, e.g., planar graphs, graphs with girth at least five, and graphs with a small maximum degree, in particular 3-regular graphs.
منابع مشابه
Complexity and approximation ratio of semitotal domination in graphs
A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملOn Hop Roman Domination in Trees
Let $G=(V,E)$ be a graph. A subset $Ssubset V$ is a hop dominating setif every vertex outside $S$ is at distance two from a vertex of$S$. A hop dominating set $S$ which induces a connected subgraph is called a connected hop dominating set of $G$. Theconnected hop domination number of $G$, $ gamma_{ch}(G)$, is the minimum cardinality of a connected hopdominating set of $G$...
متن کاملHardness of r-dominating set on Graphs of Diameter (r + 1)
The dominating set problem has been extensively studied in the realm of parameterized complexity. It is one of the most common sources of reductions while proving the parameterized intractability of problems. In this paper, we look at dominating set and its generalization r-dominating set on graphs of bounded diameter in the realm of parameterized complexity. We show that Dominating set remains...
متن کاملGenus characterizes the complexity of certain graph problems: Some tight results
We study the fixed-parameter tractability, subexponential time computability, and approximability of the well-known NP-hard problems: INDEPENDENT SET, VERTEX COVER, and DOMINATING SET. We derive tight results and show that the computational complexity of these problems, with respect to the above complexity measures, is dependent on the genus of the underlying graph. For instance, we show that, ...
متن کاملStrength of strongest dominating sets in fuzzy graphs
A set S of vertices in a graph G=(V,E) is a dominating set ofG if every vertex of V-S is adjacent to some vertex of S.For an integer k≥1, a set S of vertices is a k-step dominating set if any vertex of $G$ is at distance k from somevertex of S. In this paper, using membership values of vertices and edges in fuzzy graphs, we introduce the concepts of strength of strongestdominating set as well a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006